
©2011 Hewlett-Packard Development Company, L.P.  
The information contained herein is subject to change without notice 

Successful Strategies for QA-

Based Security Testing 

Rafal Los 

Enterprise & Cloud Security Strategist 

HP Software 



Agenda 

2 Enterprise Security – HP Confidential 

 

 

• Workshop-style for 90 minutes (or so) 

• Participation is required (or I will call on you) 

• If you brought your laptop, you can play along! 

 



Application Security Testing 

Fundamentals 



the dark art of ‘hacking’ 

Unmasking the Hacker 

• So what is ‘hacking’? 

 

• Defined as: 

“Unauthorized attempts to bypass the security 

mechanisms of an information system or network” (source: 

wiktionary.org) 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   



is there any creative cross-over? 

The functional vs. security tester 

 

• Validate what we know should be true 

• Base assumptions off of requirements 

• Formalized testing structures, methods 

• Established procedures for testing 

• Carefully defined data sets 

• Log defects to bug trackers, defect system 

• Defects are bad. 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

 

•Ignore what is known, look for unknowns 

•Base assumption off experience, skills 

•Often referred to as “anti-testing” 

•Method varies by tester, tool, app type 

•Carefully defined data sets 

•Log vulnerabilities to testing framework 

•Vulnerabilities are good. 

Functional Testers Security Testers 



how to think like a breaker 

Becoming a Hacker 

• Terminology 
• confirmed security defects are known as vulnerabilities or vulns 

• Mindset 
• think “what can I do to make this application deviate from its programmed purpose?” 

• Method 
• rely on critical thinking to circumvent inherent security controls (rely on amassed attack data) 

• Tools 
• tool sets vary by budget, experience; rely on structured QA-positioned technologies to enable you 

• Goal 
• discover ways to abuse application functionality, or to break process, manipulate the system 

 
© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   



Demo – Manipulating Application Logic 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

What if I want to buy more than 10 tickets 
at a time …and I’m a hacker? 



Demo – Manipulating Application Logic 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

Using Chrome’s “Inspect Element” option 
we make a small change… 



Demo – Manipulating Application Logic 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

Who wants to bet the application lets me 
buy 30 tickets? 



barely scratching the surface 

Functional vs. Security testing (again) 

 

• Check options 1…10 for tickets 

• Requirements say 1…10 tickets 

• Formalized testing structures, methods 

• QA Analyst would test 1…10 as defined 

• Carefully defined data sets 

• Log defects to bug trackers, defect system 

• Defects are bad. 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

 

•Ignore given options, add your own 

•Experience says try out of range 

•“Lucky guess” app will take new input 

•Not all security testers would catch this! 

•Carefully defined data sets 

•Log vulnerabilities to testing framework 

•Vulnerabilities are good. 

Functional Testers Security Testers 

more on this 



basics you should know 

Application Security Testing 101 

• Application vulnerabilities (security defects!) basics 

• Lots of great resources to read about [web] application security 
• OWASP (Open Web Application Security Project) –maintains the “Top 10” 

• WASC (Web Application Security Consortium) – Threat classifications 

• CWE (Common Weakness Enumeration) – Classified application weaknesses into comprehensive taxonomy 

• Lots of great resources on Offensive vs. Defensive application security 
• OWASP.org is a FREE great start (Open Web Application Security Project) 

• Mailing lists, books, conferences and webinars 

 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   



popular classification of 

defects 

OWASP Top 10 

1. injection 

2. cross-site scripting (XSS) 

3. broken authentication or session 

management 

4. insecure direct object reference 

5. cross-site request forgery 

6. security misconfiguration 

7. insecure cryptographic storage 

8. failure to restrict URL access 

9. insufficient transport-layer protection 

10. unvalidated redirects and forwards 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

Many attacks you hear about on 
the news today are one of these. 



injecting “into” application 

Injection 

• Injection attacks involve the 
‘attacker’ pushing their own bits 
into the application, while the 
application fails to filter/sanitize 
that input. 

 

• Results in usurping control of: 
• a process 

• a database 

• the application 

• the operating system 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   

SQL 
Injection 



injecting (java)script into the app 

Cross-Site Scripting (XSS) 

• Cross-Site Scripting (XSS) usually 
involves injecting JavaScript into the 
application, to perform some action in 
the user’s browser without their 
knowledge. 

 

• Cross-Site Scripting happens in 2 
forms: 

• Stored – attack permanent in the 
application 

• Reflected – user must click/interact to 
execute attack 

© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   



Time for a quick demo 

1

5 
© Copyright 2011 Hewlett-Packard Development Company, L.P.  The information 

contained herein is subject to change without notice. For public release.   



Software Security Testing: 

The Big Break-Up 



Challenges of Security Testing 

 

Application Security Testing 

• Identifying all the unintended functions of the code 

• Testing using data application is not expecting 

• Trying to elicit unintended responses from the application 

• Identifying unplanned workflows through the application 

 

This is not a trivial task! 



Breaking Security Testing Up 

18 Enterprise Security – HP Confidential 

Time for application security to break up 

 

• Prescriptive security mechanisms 

–Security mechanisms that can be described and identified 

• Pattern-based fuzzing 

–Computer-generated iterative patterns 

• Human based hacking and analysis 

–Manually manipulating the application, analyzing the results 



Prescriptive Security Mechanisms 

19 Enterprise Security – HP Confidential 

We should focus most of our attention and energy here. 

 

Prescriptive  Well-Defined 

Definitions  Requirements 

• Application mechanisms we can define in requirements stage 

• Assumption: If we can define it, we can test for its existence 

• Key: Creating testable application security requirements 



Defining Good Application Security 

20 Enterprise Security – HP Confidential 

How can we define solid application security requirements? 

 

• Keep it simple 

• Be clear 

• Be precise 

• Use standard language 

• Leave nothing to interpretation (binary yes or no) 



Defining Solid Security Requirements 

21 Enterprise Security – HP Confidential 

 

Simple exercise – let’s define a security requirement 

 

Component: 

Requirement(s): 



Enabling Technologies 

22 Enterprise Security – HP Confidential 

 

Good [security] requirements should not require tools to verify them. 

 

Basic application security requirements are prescriptive 

– What should the application do 

– Must have test conditions for pass/fail 

– Must have resultant states for pass/fail verification 

– Doesn’t need to go into details of why the mechanism exists, etc 

 



Pattern-Based ‘Fuzzing’ 

23 Enterprise Security – HP Confidential 

 

Understanding anti-patterns 

• Application abuse cases are generated from legitimate requirements 

• Application fuzzing data derived from real test data 

• Form-based (data-based) fuzzing is the simplest form 

– Iterate through various fields, data-types, permutations of possibilities 

– Generate types of data application is not expecting 

• Logic-based fuzzing is difficult 

– Must be done to get it ‘right’ 



Data-Based ‘Fuzzing’ 

24 Enterprise Security – HP Confidential 

 

Fuzzing is technology assisted application security testing 

• Basic – executed without advanced ‘security’ knowledge 

• Repetitive – millions+ test cases are generated and executed 

• Automated – enabling technology which can execute tests quickly 

• Comprehensive – test every parameter in an application 



Fuzzing Example 

25 Enterprise Security – HP Confidential 

Most people 

see a site or 

application 

as a 

collection of 

“visible input 

fields” … 



Fuzzing Example 

26 Enterprise Security – HP Confidential 

 

Applications have 

many parameters 

which are not visible 

to the person 

browsing without 

some technology. 

Automation will fuzz 

all the parameters it is 

coded to. 



Fuzzing Demo 

Using ZAP Proxy 

27 Enterprise Security – HP Confidential 



Human-Based Hacking and Analysis 

28 Enterprise Security – HP Confidential 

 

Advanced ‘security testing’ can be left up to the ethical hackers 

 

• Requires advanced skills from years of training/doing 

• Requires advanced technology to iterate through millions of lines of code 

 

Moral of the story: Leave the hacking to the security team 

 



Requirements – Defects Cycle 



The Requirements – Defects Cycle 

 

How are requirements – defects – incidents linked? 

• Requirements are defined at the start of project 

– Pre-defined security mechanisms for the application 

• Defects are misses against requirements 

– Feed into new requirement(s) potentially 

• Incidents are defects discovered post-release 

– Feed into new requirement(s) potentially 

Requirement 

Defect 

Incident 



Learning from Incidents 

31 Enterprise Security – HP Confidential 

 

Einstein defined madness as performing the same task and expecting different 

results … 

Do we keep re-using the same requirements and expecting better security? 

 

• Incidents teach us 2 things: 

– Where our code failed 

– How we can test better in the future 

– *Depends on how well we have performed our forensic analysis! 



Conclusions 



Recapping … 

 

• Application security ‘testing’ can be split into separate tasks 

– Things we can define/test 

– Things we need experts for 

• Good requirements are verifiable- easily and simply 

• Learning from failure is important for 2 reasons 

– Better testing 

– Better requirements 



34 

The most impoartant 
question: 
 
 

Did you learn 
anything? 

 



35 

Follow me… 

 

Twitter: 

 @Wh1t3Rabbit 

Blog: 

 HP.com/go/white-rabbit 

Podcast: 

 podcast.wh1t3rabbit.net 

 



THANK YOU 


