Successful Strategies for QA-
Based Security Testing

Rafal Los
Enterprise & Cloud Security Strategist
HP Software

4]/ ENTERPRISE SECURITY /1)

The information contained herein is subject to change without notice

2

Agenda

- Workshop-style for 90 minutes (or so)

- Participation is required (or | will call on you)

- If you brought your laptop, you can play along!

Enterprise Security — HP Confidential

Application Security Testing
Fundamentals

Unmasking the Hacker
the dark art of ‘hacking’

- So what is ‘hacking’?

- Defined as:

“Unauthorized attempts to bypass the security
mechanisms of an information system or network” ...

wiktionary.org)

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

The functional vs. security tester
IS there any creative cross-over?

Functional Testers Security Testers

- Validate what we know should be true *Ilgnore what is known, look for unknowns
Base assumptions off of requirements Base assumption oft experience, skills
Formalized testing structures, methods *Often referred to as “anti-testing”
Established procedures for testing *Method varies by tester, tool, app type
Carefully defined data sets < »+Carefully defined data sets
Log defects to bug trackers, defect system | flog vulnerabilities to testing framework
Defects are bad. ‘Vulnerabilities are good.

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

Becoming a Hacker
how to think like a breaker

Terminology

confirmed security defects are known as vulnerabilities or vulns

Mindset

think “what can | do to make this application deviate from its programmed purpose?”

Method

rely on critical thinking to circumvent inherent security controls (rely on amassed attack data)

Tools

tool sets vary by budget, experience; rely on structured QA-positioned technologies to enable you

Goal

discover ways to abuse application functionality, or to break process, manipulate the system

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. For public release.

Demo — Manipulating Application Logic

$45 General Admission $45.00 Sold Out
+ $8.85 Service
Charge

$55 General Admission $55.00 Sold Out
+ $8.15 Service
Charge

SELLOUT RISK N -icH $7 5.00
$75 General Admission - o

DESCRIPTION
What if | want to buy more than 10 tickets

H 1 4
at a time ...and I'm a hacker? NI
@
© Copyright 2011 Hewlett-Packard Development Company, L.P. The information

contained herein is subject to change without notice. For public release.

ey
g O O~ DN W)

Demo — Manipulating Application Logic

v<td class="QuantityCell">
v<div id=

"ct188_mainContent_ucEventView_ucEventTicketItemsDisplay_lvTicketItems_ctrld _pnQuantity”

class="Quantity">

¥Y<select name=
"ctle8%mainContent$ucEventViewSucEventTicketItemsDisplay$lvTicketItems$ctrld$dropTicketC
ount" id=
"ct1le®_mainContent_ucEventView_ucEventTicketItemsDisplay lvTicketItems_ctrl4 _dropTicketC

ount™> . o
coption value="1751</0ptiol USiNg Chrome’s “Inspect Element” option

<option value="2">2¢/cptiol we make a small chcmge...

<option value="3">3</optiot=
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
(npfiqn yalyusz"gregy "np*i'inns
<option value="18">10</option> r

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

<option value="30">30</option>

Demo — Manipulating Application Logic

Charge
$55 General Admission $55.00 Sold Out
+ $8.15 Service
Charge
SELLOUT RISK N -icH $75.00 p E]
$75 General Admission T Sevice
Now | have

Who wants to bet the application lets me
buy 30 tickets?

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. For public release.

Functional vs. Security testing (again)
barely scratching the surface

_Functional Testers Security Testers
Check options 1...10 for tickets *Ignore given options, add your own
Requirements say 1...10 tickets *Experience says try out of range
Formalized testing structures, methods “Lucky guess” app will take new input
- QA Analyst would test 1...10 as defined *Not all security testers would catch this!

Carefully defined data sets M»-Corefully defined data sets

Log defects to bug trackers, defect system | flog vulnerabilities to testing framework
Defects are bad. ‘Vulnerabilities are good.

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

Application Security Testing 101

basics you should know

- Application vulnerabilities (security defects!) basics

- Lots of great resources to read about [web] application security

- OWASP (Open Web Application Security Project) —maintains the “Top 10”
- WASC (Web Application Security Consortium) — Threat classifications

- CWE (Common Weakness Enumeration) — Classified application weaknesses into comprehensive taxonomy

- Lots of great resources on Offensive vs. Defensive application security

- OWASP.org is a FREE great start (Open Web Application Security Project)
- Mailing lists, books, conferences and webinars

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

OWASP Top 10

popular classification of
defects

1. injection ? Many attacks you hear about on
2. cross-site scripting (XSS) the news today are one of these.
3. broken authentication or session

management

insecure direct object reference
cross-site request forgery

4
5

6. security misconfiguration

7. insecure cryptographic storage

s. failure to restrict URL access

9. insufficient transport-layer protection

10. unvalidated redirects and forwards

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

Injection

Injecting “into” application

- Injection attacks involve the
‘attacker’ pushing their own bits
Into the application, while the
application fails to filter/sanitize
that input.

- Results in usurping control of:
- aprocess
- a database
- the application
- the operating system

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. For public release.

An attacker submits ‘extra’information, such as a single
o quotation mark or“1=1; with a login or other input
variable to alter the original SQL statement.

Via trial and error, the attacker can construct SQL
e arguments that can be used to retrieve data...table

names, row names, etc,

SQL

Injection

©

Once the database schema has been defined, the

attacker can then extract whatever data the data-

base contains...usernames, passwords, credit card
information, etc.

@

Cross-Site Scripting (XSS)

o An attacker finds an XSS hole in a web application

Injecting (Java)script into the app

The attacker creates an attack URL for stealing
sensitive information and disguises
it so that it appears legitimate

- Cross-Site Scripting (XSS) usually
involves injecting JavaScript into the
application, to perform some action in @
the user’s browser without their &
knowledge. 4

- Cross-Site Scripting happens in 2

forms: o
. 9 mWhen the victim logs
- Stored — attack permanent in the The atiacker In, Javascript embedded
application e XStk vi ink executesand
- Reflected — user must click/interact to i logn information to the

execute attack

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information @

contained herein is subject to change without notice. For public release.

Time for a quick demo

1

© %opyrighl 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. For public release.

Software Security Testing:
The Big Break-Up

Challenges of Security Testing

Application Security Testing
|dentifying all the unintended functions of the code
Testing using data application is not expecting
Trying to elicit unintended responses from the application

|dentifying unplanned workflows through the application

This is not a trivial task!

Breaking Security Testing Up

Time for application security to break up

Prescriptive security mechanisms

Security mechanisms that can be described and identified

Pattern-based fuzzing

Computer-generated iterative patterns

Human based hacking and analysis

Manually manipulating the application, analyzing the results

18 Enterprise Security — HP Confidential

Prescriptive Security Mechanisms

We should focus most of our attention and energy here.

Prescriptive - Well-Defined
Definitions — Requirements
- Application mechanisms we can define in requirements stage

- Assumption: If we can define it, we can test for its existence

- Key: Creating testable application security requirements

19 Enterprise Security — HP Confidential

Defining Good Application Security

How can we define solid application security requirements?

Keep it simple

Be clear

Be precise

Use standard language

Leave nothing to interpretation (binary yes or no)

20 Enterprise Security — HP Confidentia

Defining Solid Security Requirements

Simple exercise — let’s define a security requirement

Component:

Requirement(s):

21 Enterprise Security — HP Confidentia

Enabling Technologies

Good [security] requirements should not require tools to verify them.

Basic application security requirements are prescriptive
What should the application do
Must have test conditions for pass/fail
Must have resultant states for pass/fail verification

Doesn’t need to go into details of why the mechanism exists, etc

22 Enterprise Security — HP Confidential

Pattern-Based ‘Fuzzing’

Understanding anti-patterns

Application abuse cases are generated from legitimate requirements
Application fuzzing data derived from real test data

Form-based (data-based) fuzzing is the simplest form

Iterate through various fields, data-types, permutations of possibilities
Generate types of data application is not expecting

Logic-based fuzzing is difficult
Must be done to get it ‘right’

23 Enterprise Security — HP Confidential

Data-Based ‘Fuzzing’

Fuzzing is technology assisted application security testing
Basic — executed without advanced ‘security’ knowledge
Repetitive — millions+ test cases are generated and executed
Automated — enabling technology which can execute tests quickly

Comprehensive — test every parameter in an application

24 Enterprise Security — HP Confidential

Fuzzing Example

.
LinkEd E! Account Type: Basic

Home Profle Contacts Groups Jobs Inbox [E] Companies News More | People ~
People You May Know
p Ashley Vandiver, Corporate
Communications Consultant at Dell
Attach alink (6= | © Connect
Marina Mi_tsenmakher, sr
Linkedin Today: See all Top Headlines for You n Systems Engineer at GE Money
© connect

The One Chart You Need To
See To Understand Mobile

B

7 charts that predict the future of
muobile broadband

Republic Wireless Officially
Unveils 519/Month Service:

pﬁub 1

| RELE!

Juan Carlos Calderon,
Application Security Research
© Connect

»

All Updates - HF Software Coworkers - Shares * More = ?) Search Updates E
JT Keating via Twitter
JTKeating TweetDeck randomly dropping tweets/RTs again...
app. Any recommendations for Mac Lion?

Maybe | need another

25 Enterprise Security — HP Confidential

~ RafalLos Add Connections

p Advanced

See more »

Most people
see a site or
application
as a
collection of
“visible input
fields”

Fuzzing Example

J Request= I Response«= T Break ..]

| Tabular View v

POST hitp:ifcdn.imodules.comiopensocialimakeRequest HTTPM .1 ~
. . Host: gdn.Imodules.com

Ap p I I C at I 0 n S h ave Proxy-gnnection: keep-alive
Content-Length; 686
Crigin: hitp:fcdn imodules.com

m an y p ar am et erS User-Agent: Mozilla/5.0 (Windows NT 6.1, WOWE4) AppleWebKit/535.7 (KHTML, like Gecka) Chrome/16.0.912 21 Safari/535.7
Content-Type: applicationf-www-form-urlencoded

- . . Accept */*

W h | C h are n Ot V| S | b I e Referer: hitp:/fcdn.Imodules.com/opens acialifr?url=hitp%3A%2F %2F liss % 2E slideshare%2Ecom%2Fslideshare%2Exml&mid=15958990&appld=1200&iew=ho
meé&lang=en&ownerinapp=4801181&country=US&viewerAccess=true&baselLeoMonSecureURL=hitp%3A%2F%2Fwwwi2Elinke din%2Ecom%2F&ownerProfileUr
I=hltp%%3A%2F % 2Fwww% 2Elinkedin%2Ecom%2F profile % 2Fview%% 3Fid% 301 &st=linke din% 3A3TSwSfwMN4XNAL_kNIvU divjuObXLgU9yBrwS dib-Fgguw-3iX-GglD

tot h e p erson M7cdJH4ZL_wkb2i__i1DzPOXhTwga31HipCRBI4CDIMO70I0-mDSE_m203LU7_Whp3rhd5_nTwZvAkYNqgUPdiTGzRwpinbFVQNGaQSUpYYy7-7Fd62vDv-nnxF
ATBLC-gtE8pQN4XPATN_Ubr-72v1g86j60UvZCd54rdMWOIE 3AxiikLczEZYBBE-fdJREXEMjelJ alwiWwQw\0jUe5987 TdCtAd-nrRoEOQrZEH|Do5 g7 pDdtjvgQ 7 KATLxI SoyA

- - IpD4G3UUyl-Q&container=default&libs=dynamic-height¥%3As eltitie% 3Aviews % 3A0pensocial-0%2E9&parent=hitp%% 3A% 2F % 2Fwww32Elinkedin% 2Ecom % 2F &url

b rowsin g Wit h out ToCanvasView=hitp% A% 2F%2Fwwws2Elinkedin%2Ecom%2F osview2Fcanvas%aF _ch_page id%3D1%26_ch_panel jd%3D1%26_ch_app id%3D1595209
0%26_applicationld%301200&signedUr ToCanvasyiew=hitp%3A%2F%2Fwwwi 2Elinkedin%2Ecom%2F osview¥2Fcanvas%3F_ch_page_id%3D1%26_ch_pane
|_id%301%26_ch_app_id%3D15958990%26_application|d%301200%26_ownerld%304801181%260sUrIHash% 3DaeET&v=build-1140_3_1394&-prod

S 0 m e teC h n 0 I O g y. Accept-Encoding: sdch
Parameter Name l|\u"aT| |

ef[o)

hitp:Miss.slideshare.comislideshows/home_view

Automation W||| fUZZ :ltnfﬂethod POST T

headers Content-Type=application%2F-www-form-urlencoded
all the parameters itis o

authz signed

st linkedin:3T8wSfwN4XNAI_KNSvtl divju 0 bXLglU 9yBrwSdfb-Fgquw-3iX-Ggq0DMTc...
C O d Ed to . contentType TEXT

numEentries 3

getSummaries false

signOwner true

signViewer true

gadget hitp:Miss.slideshare.comislideshare.xml

container default r
26 Enterprise Security — HP Confidential bypassSpecCache

nauthState

Fuzzing Demo
Using ZAP Proxy

Er&rprise Security — HP Confidential

Human-Based Hacking and Analysis

Advanced ‘security testing’ can be left up to the ethical hackers

Requires advanced skills from years of training/doing

Requires advanced technology to iterate through millions of lines of code

Moral of the story: Leave the hacking to the security team

28 Enterprise Security — HP Confidential

Requirements — Defects Cycle

The Requirements — Defects Cycle

. . . Requirement
How are requirements — defects — incidents linked? 9

Requirements are defined at the start of project

- Pre-defined security mechanisms for the application

Defects are misses against requirements

- Feed into new requirement(s) potentially

Incidents are defects discovered post-release Defect

- Feed into new requirement(s) potentially |nciden|‘

@

Learning from Incidents

Einstein defined madness as performing the same task and expecting different
results ...
Do we keep re-using the same requirements and expecting better security?

- Incidents teach us 2 things:

-~ Where our code failed
- How we can test better in the future

- *Depends on how well we have performed our forensic analysis!

31 Enterprise Security — HP Confidential

Conclusions

Recapping ...

Application security ‘testing’ can be split into separate tasks
Things we can define/test
Things we need experts for

Good requirements are verifiable- easily and simply

Learning from failure is important for 2 reasons

Better testing
Better requirements

The most impoartant
question:

anything?

/

/

|
> %

Did you learn [/ig |

Follow me...

Twitter:
@Wh 1t3Rabbit
Blog:
HP.com/go/white-rabbit
| Podcast:
/ / podcast.wh 1t3rabbit.net

y O

