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Agenda

- Workshop-style for 90 minutes (or so)

- Participation is required (or | will call on you)

- If you brought your laptop, you can play along!
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Application Security Testing
Fundamentals



Unmasking the Hacker
the dark art of ‘hacking’

- So what is ‘hacking’?

- Defined as:

“Unauthorized attempts to bypass the security
mechanisms of an information system or network” ...

wiktionary.org)
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The functional vs. security tester
IS there any creative cross-over?

Functional Testers Security Testers

- Validate what we know should be true *Ilgnore what is known, look for unknowns
Base assumptions off of requirements Base assumption oft experience, skills
Formalized testing structures, methods *Often referred to as “anti-testing”
Established procedures for testing *Method varies by tester, tool, app type
Carefully defined data sets < »+Carefully defined data sets
Log defects to bug trackers, defect system | flog vulnerabilities to testing framework
Defects are bad. ‘Vulnerabilities are good.
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Becoming a Hacker
how to think like a breaker

Terminology

confirmed security defects are known as vulnerabilities or vulns

Mindset

think “what can | do to make this application deviate from its programmed purpose?”

Method

rely on critical thinking to circumvent inherent security controls (rely on amassed attack data)

Tools

tool sets vary by budget, experience; rely on structured QA-positioned technologies to enable you

Goal

discover ways to abuse application functionality, or to break process, manipulate the system
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Demo — Manipulating Application Logic

$45 General Admission $45.00 Sold Out
+ $8.85 Service
Charge

$55 General Admission $55.00 Sold Out
+ $8.15 Service
Charge

SELLOUT RISK N -icH $7 5.00
$75 General Admission - o

DESCRIPTION
What if | want to buy more than 10 tickets

H 1 4
at a time ...and I'm a hacker? NI
@
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Demo — Manipulating Application Logic

v<td class="QuantityCell">
v<div id=

"ct188_mainContent_ucEventView_ucEventTicketItemsDisplay_lvTicketItems_ctrld _pnQuantity”

class="Quantity">

¥Y<select name=
"ctle8%mainContent$ucEventViewSucEventTicketItemsDisplay$lvTicketItems$ctrld$dropTicketC
ount" id=
"ct1le®_mainContent_ucEventView_ucEventTicketItemsDisplay lvTicketItems_ctrl4 _dropTicketC

ount™> . o
coption value="1751</0ptiol USiNg Chrome’s “Inspect Element” option

<option value="2">2¢/cptiol we make a small chcmge...

<option value="3">3</optiot=
<option value="4">4</option>
<option value="5">5</option>
<option value="6">6</option>
<option value="7">7</option>
<option value="8">8</option>
(npfiqn yalyusz"gregy "np*i'inns
<option value="18">10</option> r
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Demo — Manipulating Application Logic

Charge
$55 General Admission $55.00 Sold Out
+ $8.15 Service
Charge
SELLOUT RISK N -icH $75.00 p E]
$75 General Admission T Sevice
Now | have

Who wants to bet the application lets me
buy 30 tickets?
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Functional vs. Security testing (again)
barely scratching the surface

_Functional Testers Security Testers
Check options 1...10 for tickets *Ignore given options, add your own
Requirements say 1...10 tickets *Experience says try out of range
Formalized testing structures, methods “Lucky guess” app will take new input
- QA Analyst would test 1...10 as defined *Not all security testers would catch this!

Carefully defined data sets M»-Corefully defined data sets

Log defects to bug trackers, defect system | flog vulnerabilities to testing framework
Defects are bad. ‘Vulnerabilities are good.
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Application Security Testing 101

basics you should know

- Application vulnerabilities (security defects!) basics

- Lots of great resources to read about [web] application security

- OWASP (Open Web Application Security Project) —maintains the “Top 10”
- WASC (Web Application Security Consortium) — Threat classifications

- CWE (Common Weakness Enumeration) — Classified application weaknesses into comprehensive taxonomy

- Lots of great resources on Offensive vs. Defensive application security

- OWASP.org is a FREE great start (Open Web Application Security Project)
- Mailing lists, books, conferences and webinars
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OWASP Top 10

popular classification of
defects

1. injection ? Many attacks you hear about on
2. cross-site scripting (XSS) the news today are one of these.
3. broken authentication or session

management

insecure direct object reference
cross-site request forgery

4
5

6. security misconfiguration

7. insecure cryptographic storage

s. failure to restrict URL access

9. insufficient transport-layer protection

10. unvalidated redirects and forwards
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Injection

Injecting “into” application

- Injection attacks involve the
‘attacker’ pushing their own bits
Into the application, while the
application fails to filter/sanitize
that input.

- Results in usurping control of:
- aprocess
- a database
- the application
- the operating system
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An attacker submits ‘extra’information, such as a single
o quotation mark or“1=1; with a login or other input
variable to alter the original SQL statement.

Via trial and error, the attacker can construct SQL
e arguments that can be used to retrieve data...table

names, row names, etc,

SQL

Injection

©

Once the database schema has been defined, the

attacker can then extract whatever data the data-

base contains...usernames, passwords, credit card
information, etc.

@



Cross-Site Scripting (XSS)

o An attacker finds an XSS hole in a web application

Injecting (Java)script into the app

The attacker creates an attack URL for stealing
sensitive information and disguises
it so that it appears legitimate

- Cross-Site Scripting (XSS) usually
involves injecting JavaScript into the
application, to perform some action in @
the user’s browser without their &
knowledge. 4

- Cross-Site Scripting happens in 2

forms: o
. 9 mWhen the victim logs
- Stored — attack permanent in the The atiacker In, Javascript embedded
application e XStk vi ink executesand
- Reflected — user must click/interact to i logn information to the

execute attack
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Time for a quick demo

1
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Software Security Testing:
The Big Break-Up




Challenges of Security Testing

Application Security Testing
|dentifying all the unintended functions of the code
Testing using data application is not expecting
Trying to elicit unintended responses from the application

|dentifying unplanned workflows through the application

This is not a trivial task!



Breaking Security Testing Up

Time for application security to break up

Prescriptive security mechanisms

Security mechanisms that can be described and identified

Pattern-based fuzzing

Computer-generated iterative patterns

Human based hacking and analysis

Manually manipulating the application, analyzing the results
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Prescriptive Security Mechanisms

We should focus most of our attention and energy here.

Prescriptive - Well-Defined
Definitions — Requirements
- Application mechanisms we can define in requirements stage

- Assumption: If we can define it, we can test for its existence

- Key: Creating testable application security requirements
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Defining Good Application Security

How can we define solid application security requirements?

Keep it simple

Be clear

Be precise

Use standard language

Leave nothing to interpretation (binary yes or no)
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Defining Solid Security Requirements

Simple exercise — let’s define a security requirement

Component:

Requirement(s):
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Enabling Technologies

Good [security] requirements should not require tools to verify them.

Basic application security requirements are prescriptive
What should the application do
Must have test conditions for pass/fail
Must have resultant states for pass/fail verification

Doesn’t need to go into details of why the mechanism exists, etc
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Pattern-Based ‘Fuzzing’

Understanding anti-patterns

Application abuse cases are generated from legitimate requirements
Application fuzzing data derived from real test data

Form-based (data-based) fuzzing is the simplest form

Iterate through various fields, data-types, permutations of possibilities
Generate types of data application is not expecting

Logic-based fuzzing is difficult
Must be done to get it ‘right’
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Data-Based ‘Fuzzing’

Fuzzing is technology assisted application security testing
Basic — executed without advanced ‘security’ knowledge
Repetitive — millions+ test cases are generated and executed
Automated — enabling technology which can execute tests quickly

Comprehensive — test every parameter in an application
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Fuzzing Example

.
LinkEd E! Account Type: Basic

Home Profle Contacts Groups Jobs Inbox [E] Companies News More | People ~
People You May Know
p Ashley Vandiver, Corporate
Communications Consultant at Dell
# Attach alink (6= | © Connect
Marina Mi_tsenmakher, sr
Linkedin Today: See all Top Headlines for You n Systems Engineer at GE Money
© connect

The One Chart You Need To
See To Understand Mobile

B

7 charts that predict the future of
muobile broadband

Republic Wireless Officially
Unveils 519/Month Service:

pﬁub 1

| RELE!

Juan Carlos Calderon,
Application Security Research
© Connect

»

All Updates - HF Software Coworkers - Shares * More = ?) Search Updates E
JT Keating via Twitter
JTKeating TweetDeck randomly dropping tweets/RTs again...
app. Any recommendations for Mac Lion?

Maybe | need another
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p Advanced

See more »

Most people
see a site or
application
as a
collection of
“visible input
fields”



Fuzzing Example

J Request= I Response«= T Break .. ]

| Tabular View v

POST hitp:ifcdn.imodules.comiopensocialimakeRequest HTTPM .1 ~
. . Host: gdn.Imodules.com

Ap p I I C at I 0 n S h ave Proxy-gnnection: keep-alive
Content-Length; 686
Crigin: hitp:fcdn imodules.com

m an y p ar am et erS User-Agent: Mozilla/5.0 (Windows NT 6.1, WOWE4) AppleWebKit/535.7 (KHTML, like Gecka) Chrome/16.0.912 21 Safari/535.7
Content-Type: applicationf-www-form-urlencoded

- . . Accept */*

W h | C h are n Ot V| S | b I e Referer: hitp:/fcdn.Imodules.com/opens acialifr?url=hitp%3A%2F %2F liss % 2E slideshare%2Ecom%2Fslideshare%2Exml&mid=15958990&appld=1200&iew=ho
meé&lang=en&ownerinapp=4801181&country=US&viewerAccess=true&baselLeoMonSecureURL=hitp%3A%2F%2Fwwwi2Elinke din%2Ecom%2F&ownerProfileUr
I=hltp%%3A%2F % 2Fwww% 2Elinkedin%2Ecom%2F profile % 2Fview%% 3Fid% 301 &st=linke din% 3A3TSwSfwMN4XNAL_kNIvU divjuObXLgU9yBrwS dib-Fgguw-3iX-GglD

tot h e p erson M7cdJH4ZL_wkb2i__i1DzPOXhTwga31HipCRBI4CDIMO70I0-mDSE_m203LU7_Whp3rhd5_nTwZvAkYNqgUPdiTGzRwpinbFVQNGaQSUpYYy7-7Fd62vDv-nnxF
ATBLC-gtE8pQN4XPATN_Ubr-72v1g86j60UvZCd54rdMWOIE 3AxiikLczEZYBBE-fdJREXEMjelJ alwiWwQw\0jUe5987 TdCtAd-nrRoEOQrZEH|Do5 g7 pDdtjvgQ 7 KATLxI SoyA

- - IpD4G3UUyl-Q&container=default&libs=dynamic-height¥%3As eltitie% 3Aviews % 3A0pensocial-0%2E9&parent=hitp%% 3A% 2F % 2Fwww32Elinkedin% 2Ecom % 2F &url

b rowsin g Wit h out ToCanvasView=hitp% A% 2F%2Fwwws2Elinkedin%2Ecom%2F osview2Fcanvas%aF _ch_page id%3D1%26_ch_panel jd%3D1%26_ch_app id%3D1595209
0%26_applicationld%301200&signedUr ToCanvasyiew=hitp%3A%2F%2Fwwwi 2Elinkedin%2Ecom%2F osview¥2Fcanvas%3F_ch_page_id%3D1%26_ch_pane
|_id%301%26_ch_app_id%3D15958990%26_application|d%301200%26_ownerld%304801181%260sUrIHash% 3DaeET&v=build-1140_3_1394&-prod

S 0 m e teC h n 0 I O g y. Accept-Encoding: sdch
Parameter Name l|\u"aT| |

ef[o)

hitp:Miss.slideshare.comislideshows/home_view

Automation W||| fUZZ :ltnfﬂethod POST T

headers Content-Type=application%2F-www-form-urlencoded
all the parameters itis o

authz signed

st linkedin:3T8wSfwN4XNAI_KNSvtl divju 0 bXLglU 9yBrwSdfb-Fgquw-3iX-Ggq0DMTc...
C O d Ed to . contentType TEXT

numEentries 3

getSummaries false

signOwner true

signViewer true

gadget hitp:Miss.slideshare.comislideshare.xml

container default r
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Fuzzing Demo
Using ZAP Proxy
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Human-Based Hacking and Analysis

Advanced ‘security testing’ can be left up to the ethical hackers

Requires advanced skills from years of training/doing

Requires advanced technology to iterate through millions of lines of code

Moral of the story: Leave the hacking to the security team
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Requirements — Defects Cycle



The Requirements — Defects Cycle

. . . Requirement
How are requirements — defects — incidents linked? 9

Requirements are defined at the start of project

- Pre-defined security mechanisms for the application

Defects are misses against requirements

- Feed into new requirement(s) potentially

Incidents are defects discovered post-release Defect

- Feed into new requirement(s) potentially |nciden|‘

@



Learning from Incidents

Einstein defined madness as performing the same task and expecting different
results ...
Do we keep re-using the same requirements and expecting better security?

- Incidents teach us 2 things:

-~ Where our code failed
- How we can test better in the future

- *Depends on how well we have performed our forensic analysis!
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Conclusions




Recapping ...

Application security ‘testing’ can be split into separate tasks
Things we can define/test
Things we need experts for

Good requirements are verifiable- easily and simply

Learning from failure is important for 2 reasons

Better testing
Better requirements



The most impoartant
question:

anything?

/

/

|
> %

Did you learn [ /ig |



Follow me...

Twitter:
@Wh 1t3Rabbit
Blog:
HP.com/go/white-rabbit
| Podcast:
/ / podcast.wh 1t3rabbit.net
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